The Study On The Applicability Of AHO-CORASICK Algo rithm
In Identifying Tests’ Validity

Ed O. Omictin 1™ Rodrigo Gante Jf? Robby Rosa P. Villaflore?
iced_3@yahoo.com rodgantejr@gmail.com robzvil@gmail.com
Ma. Bryne Catherine M. Marchafi Rodolfo T. Noblefranca J°)
bryne_m7@yahoo.com jayarnob@hotmail.com
Abstract

Aho-Corasick Algorithm (ACA) is a kind of dictiogamatching algorithm that locates
elements of finite set of strings within an inpektt It matches all patterns “at once”, so the
complexity of the algorithm is linear in the lengththe patterns plus the length of the search&d te
plus the number of output matches. This paper dsesithe applicability of Aho-Corasick algorithm
in identifying test validity using the standard @elines in Evaluating Tests. A proposed Quiz-Zone
system was developed in order to evaluate andhesipplicability of the algorithm used. Quiz-Zone
allows the user to create exam that will checktdst's validity. It also allows the user to chodise
types of exam namely: Matching Type, Multiple Chpkessay, True or False and Short-Answer. The
researchers revealed that there are some ruledantifying test validity that ACA can'’t be applied.

Keywords : Aho Corasick Algorithm, string-matching algorithtast validity

1. INTRODUCTION AND THEORETICAL BACKGROUND

In creating exam teachers, are supposed to foll@vguidelines in evaluating a good exam
which usually they took for granted. Unfortunatelgpst teachers just produce an exam without
thinking of the guidelines. When they make anotedrof exam, they seek for old test paper to get
guestion. This study provides teacher a validakeaneand hassle free task in creating exam. They do
not need to think of the guidelines because théesyslready evaluates the questions whether it
follows the guidelines. They could also retrievdideted questions from the database and creates
exam from the retrieve questions and view the arsafthat exam.

Aho-Corasick algorithm is a string algorithm crehtey Alfred V. Aho and Margaret J.
Corasick. It is a kind of dictionary-matching algom that locates elements of finite set of strings

within an input text. It matches all patterns “ate”, so the complexity of the algorithm is linéar

! Department of Information Technology, College ofrpater Studies, Silliman University
2 Department of Computer Science, College of ComSiteties, Silliman University
3 Department of Computer Science, College of ComSiteties, Silliman University
4 Department of Computer Science, College of ComSiteaties, Silliman University
® Department of Computer Science, College of Com&ttaties, Silliman University

the length of the patterns plus the length of tbarched text plus the number of output matches.
Since, all matches are found; there can be a guadanber of matches in every substring string e.g
dictionary = a, aa, aaa, aaaa and input stringda.a(/Aho & Corasick, June 1975).

Aho-Corasick algorithm is used on multiple-strirpeching operations. Several algorithms on
string matching are also being implemented. But -@looasick is most commonly used for its
automaton which can be implemented efficiently. Tinethods of performing useful operations on
strings by exploiting the sequence, or syntactitedng, of their symbols are considered usefuhen t
field of text-processing, information retrievalxteediting and word-processing, linguistic analysis
and also areas in molecular biology such as gesetjuence analysis.

One of the most common problems involving stringghat of searching occurrences of a
given pattern as a substring of a larger text giriccording to Graham Stephen, author of String
Searching Algorithms, the extension of the strirgtehing problem involves searching the text string
for an occurrence of any set of N pattern strings= {z1, z2,...,zn}. These problems can be
accomplished more efficiently in time by employiagattern-matching technique, or automaton, to

search for the pattern strings simultaneouslytlikd of Aho-Corasick algorithm. (Stephen, 1994).

2. OBJECTIVES OF THE STUDY

This study aimed to prove how Aho-Corasick algonitts used in identifying the validity of
tests basing on the selected rules. Specificalltrives to answer the following questions: a) How
principles of Aho-Corasick algorithm is used inateatining the validity based on the selected rutes i
creating tests? and b) How to design a user irderfand system features which are detailed while

maintaining high understandability in the test terl application?

3. SCOPE AND LIMITATION

The main focus of the study was to investigate HWdve-Corasick algorithm is applied in
identifying the validity of the test. Specificaltiie study focused on development of a system named
Quiz-zone that enables the user to create a testbows the user to choose five types of exam
namely: Matching Type, Multiple Choice, Essay, TrueFalse and Short-Answer. The proposed
system analyzes the validity of the test in acaocdato Aho-Corasick algorithm. Listed below are the
selected rules in making exams depending on thedfpest, which are the basis in the formulatibn o
the algorithm, that are included in the evaluabbthe applicability of Aho-Corasick algorithm:

True-False Items:

-In arranging the items avoid the regular recurrefctrue” and “false” statements.

-Score is number of correct answers.

Matching Items:

-There should be two columns; under column “A” is #timuli which should be longer and
more descriptive than the responses under coluriin “B

-Use larger or smaller number of responses thanipesimmand permit the responses to be used
more than once.

-Place the responses in alphabetical, numericdir@nological order.
-Put all the matching items on the same page.
Multiple Choice:
-Avoid using the alternative “all of the above” ande “none of the above” with extreme
caution.
-Random occurrence of responses should be employed.
Short Answer Items:
-Blank should be of equal lengths.
-Place the blank near or at the end of the statement

4. RESEARCH COMPONENT
4.1. Interpretation
Table 1 lists all the rules that are included ie tmplementation of the algorithm and its

corresponding interpretation by the researchers.ifiterpretations are the basis in the conversfon o

the rules into pseudocodes and implementationeoéltporithm.

Table 1L

List of Rules in Identifying Test Validity

Type of test

Rules

Interpretation

Multiple

1.) Avoid using the alternative “All of th
above” and use “None of the above” w
extreme caution.

eDo not use “All of the above”
ttiNone of the above”

an

Choice

2.)Random occurrence of
should be employed

respons

not be
only

should
allow

us
thre

d’esponses
consecutively,

1.) There should be two columns; ung
column ‘A’ are the stimuli which shoul
be longer and more descriptive than
responses under column ‘B’

e€fhere are two columns — column A a

h&tring should be longer and mo|

defined that in column B.

consecutive occurrences of responses.

dcolumn B. Under column A, the input

ed

)

nd

re

Matching
Items

2.) Use larger or smaller number
responses than premises, and permit
responses to be used more than once.

offhe number of responses should
thesser or greater than number
responses, say if the there are 5 ite
then the responses should be either 3

be
of
ms
or

3.) Place the responses in alphabeti
numerical or chronological order

cdlhe responses should be in org
alphabetically or numerically.

ler

4.) Put all of the matching items in t
same page.

eéMatching items should be in one page|.

1.) Leave only one blank.

In every item, there d$thoonly have
one blank (6 series of lines).

Short Answer

2.) Blank should be of equal length.

The blank $thdwave the same size
length(6 series of lines)

DI

3.) Place the blank near or at the end
the statement.

dhe blank could either be at the start
at the end of the statement.

or

True-False

1.) In arranging the items avoid thédo not use regular recurrence of “tru

regular recurrence of “true” and “falsg
statements.

2"and “false” statement. Regul
occurrence of this pattern: TFTFTFT
FTFTFTFT and for instance in a 1
items exams then the answers are
true or all false, it would then not &
accepted.

2.) Score is the number of corrg
answers. (This holds true to all objecti
type of tests)

cThis will depends on the instructig
vgiven by the user. Note: The research
will only tackle test validity.

4.2 Matching Finite States

Aho-Corasick builds a finite state of every inpdttext which is considered as strings. It does
the process of matching finite states. Following sample question and diagrams to further explain
how Aho-Corasick is used in the study:

Type of test: Multiple Choice

Question: What is the name of the penguin maschinoix?

a.) Tax b.) Tux c.) Dux d.) Nonetlog above
) O@ PN S e e
U ‘\ >—>1: n :P—»(o /)—»(\ e \:{ >—»(f i)
Figure 1. Finite State Diagram 1 ~ = O
(&))
(= i A
L) 0
Figure 2. Finite State Diagram 2 N \ ’),
i Figure 4. Finite State Diagram
Figure 3. Finite State Diagram 3

There are four choices in the Multiple Choice questthe choices are converted into finite
state. In figure 1, the word tax is converted ifihite state wherein the shaded circle servesas t
start node. Each node contains every inputted Jetteaning one letter in one node. The first letter
will be inputted and stored in the next node uitd succeeding letters are accomplished. Figures 2
and 3 are similar to the flow of the nodes in fegar In fig 4, the choice given is “none of the &djp
the letter “n” enters in the transition node, nexanother node for the letter “0”, since the rieker
is “n” it goes back to the previous node that lediet “n”, next is letter “e” it will create anothaeode
because letter “e” does not exist yet. Another nigsdeeing created for the space between the word
“none” and “of” but since the next letter is “0” duthat letter already exist then it goes back atmin
the node that has letter “0”, connecting to thatl be the node for letter “f’ then back again twet
“space” node and will have another node “t” theothar node for “h” and goes back again to the
node that has letter “e” then back to space nodenzake another node for “a” then “b” until it goes
to node “0” then “v” and finally it goes back tode “e”. The node “e” is the accepting state.

After performing the finite state choices, Aho-Ceick does the next process. There is already
an existing FNS which is “None of the above” andl“@f the above”. This FNS will be compared
with the FNS choices. If one of the existing FN3 wiatch to the FNS choices then an error occurs
because it violates the rules in making Multipleoick tests. That method is called Aho-Corasick

since it matches finite states.

4.3. Algorithms Implemented

The following are the algorithms of the goto anitlfe functions:

Algorithm 1: Construction of the goto function.

Input: Set of
K={y1,y2...yk}.

Output: Goto function g and a partially
computed output function.

Method: Assuming that output(s) is
empty when state s is first created, ang
g(s,a)=fall if a is undefined or ifg(s,a) has not
yet been defined. The procedure enter(y
inserts into the goto graph a path that spell
outy.

Begin

Newstate— 0

For 1 <1 until k do enter (yi)

For all a such that g(0,a) =fail do g(0,a)

keywords

UJ

End

Algorithm 2: Construction of the failure function.

Input: Goto function g and output
function from Algorithm 1.
Output: Failure function and output
function output.
Method:
begin
gueue— empty
for each a such that g(O, a) # 9
do
begin
gueue— queue U {s}
f(s)— 0
end
while queuet empty do

begin

Procedure enter(al,a2,...am)
Begin
state— 0;j « 1
while g (state, aj ¥ fail do

begin
state— g (state, a))
je—i+l

end
for p< juntil m do

begin
newstate— newstate + 1
g (state, ap + newstate
state— newstate

end

output(statey}— {al, a2 ... am}
end

let r be the next state in queue
queue— queue— {r}
for each a such that g(r, a) # fail

do
begin
gueue— queue U {s }
state— f(r)
while g(state, a) = fail do state f (
state)

))

f(s) < g(state, a)
output(s)— output(s) U output (f (s

end
end
end

However, the failure function can be eliminated.s Atated by Aho and Corasick, a

deterministic set of states S and a next move iométsuch that for each state S and input symbol a,

d(s,a) is a state in S. Deterministic finite auttmnamakes exactly one state transition on eacht inpu

symbol. By using the next move functidrof an appropriate deterministic finite automatorpiace

of the goto function. Below is the algorithm imngihating failure function.

Algorithm 2: Construction of a deterministic finid@tomaton

Input: Goto function g from Algorithm begin
1 and failure function f from Algorithm 2. let r be the next state in
Output: Next move functiob. gueue
Method: queue— queue - {r}
begin for each symbol a do
queue— empty ifg(r, @) = s# fail do
for each symbol a do begin
begin queue— queue U {s}
6 (0, @)« g(0, a) o(r,a)«—s
if g (0, a# O then queue— end
queue U {g (0, a)] elsed (r, a)« o (f(r), a)
end end
while queue empty do end

4.4 Deterministic Finite Automations, Transition Tebles and Algorithms

lllustrated in succeeding pages are the deterntnfigtite automatons, transition tables and
algorithms of the rules listed in Table 1. The diags explains where each input x goes through the
state S. To fully understand the diagram, a tremmsifable is presented to give clarity to the flofv
the input x. All the transition tables presentedtlie next pages has 6 columns, namely: Inputs,
Current (current state), Answer, Remaining (renmgjninputs), Move (next state), Matched (“+”

accepted, “-" not accepted).

4.4.1 Multiple Choice

Figure 5 illustrates a diagram with 20 states.eSt&, 4, 8,12,16,20 are non final states, the rest
are all final states. It will only accept multippecurrences of the answers “a” “b” “c” “d” “e” more
than that it will no longer accept it , meaning te transitions goes to the non final states. For
instance, inputs “bcdaaaa” when the first inpdbistransition goes to state 5. From state 5 ifuihjs
“c” it goes to state 9. In state 9, the next inigutd” it goes to state 13 and in state 13, whenribxt
input is “a” it goes to state 1 and again if thput is “a” it goes to state 2. If in the eventttimastate
2 the next input is “a” then transition goes taestd. In this case the last input will not be atedp

anymore.

Figure 5. DFS of AC algorithm in Multiple Choice for Rule 2

Table 2 is shown to give clarification on the demgrpresented above. Input = “bcdaaaa”, it
will be then tokenized by characters. Starting fithi start state when the input is ‘b’ a will triios
move to state 1 and the remaining characters woel@tdaaaa’. The process continues until all the

letters are accepted. Same steps will be followeadgut ‘bedc’.

Table 2
Transition Table of Multiple Choice for input bc@@asand bcdc
Inputs Current Answer Remaining Move Matched
bcdaaaa S b Cdaaaa 5 +
5 C Daaaa 9 +
9 d Aaaa 17 +
17 a Aaa 1 +
1 a Aa 2 +
2 a A 3 +
3 a None 4 +
b ¢ d d S b Cdc 5 +
5 c Dc 9 +
9 d C 13 +
13 C None 9 +

In the pseudocode state is initialized to zeroJeniniput is not equal to empty then it continues
to a switch statement that allows the user to ahdetters from a to e. In case a if state is etpal
zero then it goes to state 1 and so on if it ie$%e6,7,9,10,11,13,14,15,17,18 and 19 it stagtast 1.

Same thing happens to case b,c,d, and e. It orttgraan the inputs based on Figure 2.1.

Psuedocode for Multiple choice rule # 2:

state=0; if(state==10) state=11,
while(inputfempty){ if(state==11) state=12;

switch(input) if(state==1or2or3or5o0r6or7orl3
case 'a"; if(state==0) state=1; or 14 or 15 or 17 or 18 or 19) state=9;
if(state==1) state=2; case 'd": if(state==0) state=13;
if(state==2) state=3; if(state==13) state=14,

if(state==3) state=4; if(state==14) state=15;

if(state==5 or 6 or 7 or 9 or 10 or 11 or if(state==15) state=16;

13 or 14 or 15 or 17 or 18 or 19) state=1,; if(state==1or2or3or5or6o0r7or9
case 'b": if(state==0) state=5; or 10 or 11 or 17 or 18 or 19) state=9;
if(state==>5) state=6; case 'e". if(state==0) state=17;
if(state==6) state=7, if(state==17) state=18;
if(state==7) state=8; if(state==18) state=19;
if(state==1 or 2 or 3 or 9 or 10 or 11 or if(state==19) state=20;

13 or 14 or 15 or 17 or 18 or 19) state=5; if(state==1or2or3or5o0r6o0r7or9
case 'c" if(state==0) state=9; or 10 or 11 or 13 or 14 or 15) state=9;
if(state==9) state=10;

Figure 6 is a diagram for rule number one in midtiphoice wherein every occurrence of
“none of the above” “all of the above” statements aot allowed. In this diagram it has 20 states.
States 1-17 are all final states and the rest arefimal state. From state O if input is “x|_oftlibv
transition goes to state 1 else input is “a” it go@ state 2 else input is “n” it goes to state Ar®mM

state 1 if input is “xI_ofthbv” transition goes $tate 2. State 1 and state 2 has a loop its “Xbueft

for state 1 and “a” for state 2. From state 18t is “0” transition goes to state 19, from stb®eit
goes to state 20 if input is “n”, in state 20 ipir is “e” transition goes to state 4. Going baxktate
2 if input is “I” it goes to state 3 else input‘ds_of vitenhbrv” it goes to state 1. From state $iput
is “I” then it goes to state 4 else input is “X vitenhbrv” it goes to state 1. From state 4 if injgu’ "
it goes to state 5, else input is “xofvitenhbrvjdes to state 1. In state 5 if input is “0” it gde state
6 else input is “x_fvitenhbrv” it goes to stateState 6, if input is “f” it goes to state 7 els@um is

“x_ovltenhbrv” it goes to state 1. State 7, if inp&1“_" it goes to state 8 else input is “x_ofvidmv”

it goes to state 1. In state 8 if input is “t” thieigoes to state 9 else it goes to state 1. Statgout is
“h” it goes to state 10 else it goes to state ktéte 10 if input is “e” it goes to state 11 atsgoes to
state 1. Looking at state 11, if input is “_” itegto state 12 else it goes to state 1. Statenfh@f is
“a” it goes to state 13 else it goes to state &teSt3, input is “b” it goes to state 14 else iegdo
state 1. In state 14, if input is “0” transitionggoto state “15” else it goes to state 1. In si&teif

input is “v” it goes to state 16 else it goes tatstl. From state 16 if input is “e” it goes totsta7

where in state 17 has a loop “xIf_othbrv”. Statels7/3asses a transition “a” to state 2.

let x as others

_othby

¥_ohdtenhbre

Figure 6. DFS of AC algorithm of Multiple Choice for Rulel#

Table 3 shows the input string “world” and “all thfe above” is accepted or rejected. In the
table, it is clearly shown where every input chegagoes starting from the start state.

When the input string is “world”, the “world” is kenized by letters. Starting from the start
state when the input character is ‘w’ it goes #estl and the remaining letters would be “orld” the
process continues until all the letters is acceptsdi is marked by a plus sign. On the other hdnd, i
the input string is “All of the above” denoted by &gain starting at the start state it goes te Sat

and is rejected- represented by minus sign.

Table 3.
Transition Table of Multiple Choice for input stgirfiworld” and“All of the above”

Inputs Current Answer Remaining Move Matched
w S w orld 1 +
0 1 0 rid 1 +
r 1 r Id 1 +
| 1 I d 1 +
d 1 d None 1 +
A S A None 2 -

Shown on the next succeeding sections are pseue®awden the input string is “all of the
above” and “none of above”. Let x as the inputngfrand S as state. When state is equal to zero then
it continues to the conditional statement when inpwnot equal to empty then it loops starting from
the 1 until it reaches the desired number of itefwery item is evaluated if the list of choices has
“All of the above” or “None of the above” and if detects that there are choices inputted as
mentioned then it displays an error message congaihat it violates the rules of validity.

As shown in the pseudocodes x is initialized asiirgmd s as state. When state is equal to zero
continues to the if statement if input is not eciwaémpty it loops from 1 until to the nth itemsiteh
inside the loop it evaluates if the inputted strisigh or B which is the “All of the above” and “Nen
of the above” it gives an error message othervtipeints the inputted string x. After it is evaladtit
goes out from the loop statement and evaluatdwiftate S is equal to 2 then it is not accepteel el
there is no input.

Pseudocode in Multiple Choice for rule # 1:

Input (none, all of the above) else

Let x as input and s as state print(x)

State =0 }

if input Fempty { }

fori =1 until n If (s==2)

do Print <not accepted>
if (x=A or x=B) Else

print <not accepted> Print <no input>

4.4.2 Matching Type

In matching type, the rules 1 and 2 can't be solgdiho-Corasick Algorithm. Researchers
tried to look for another algorithm to solve thelgem but they didn't found any. Probably, there is
but it tales lot of time and ample study to look &mother algorithm to solve the problem. Reseasche
were given a limited time to work for the projest, instead of consuming all the time in looking for
another algorithm, they decided to make their oaloteon for the problem.

In this rule, the researchers used structure fi# tonitialized that there are 50 capacities that
can be stored same as with colB while colA[t] isi@qgo empty t as the index number for colA it
increments the value of t as the user inputs orother hand in colB[n] is not equal to empty, it

increments n, n as the index of colB. It continteesvaluate if the index t is less than n.

Rule 1.) There should be two columns; under coldAihare the stimuli which should be

longer and more descriptive than the responses wotlenn “B”.

Pseudo codes:

Struct String { }

ColA [50]; While(ColB[n}£ empty){
ColB [50]; N++;

h }
While(ColA[t]=empty){ If (t<n) <error>;

T++;

In this rule the researcher’s initialized iteminjmiequal to 10, ansinput is equal to 15, x and y
is equal to 0. Then x as iteminput minus 2 and essinput+2 if ansinput is less than x or ansinput

greater than y then it displays an error messeaggeieis accepted.

Rule 2.) Use a larger or smaller number of respotisgn premises, and then permit responses

to be used more than once.

Pseudo codes:
Ex. items inputted: 10

responses inputted: 15 x=iteminput-2;

iteminput=10; y=iteminput+2;

ansinput=15; if(ansinput<x or ansinput>y) <error>
x=0; else

y=0; <accepted>

443 Trueor False

Figure 7 demonstrates the transitions following thkes with only 5 successive “true” or
“false” answer is allowed. Answering in more thée tallowable answer would mean a violation of
the rule. Likewise, the pattern TFTFTF or FTFTFile allowed for the answers. From “S” which is
the start state, if the input is “T” it goes toteta. In statel if the input is “T” it goes to €&, from
state 9 input is “T” it goes to state 10, from ata0 if input is “T” it goes to state 11, from stdt1, if
input is “T” it goes to state 12. States 1, 9,101 21are all final states. In state 12, if inputTs it
goes to state 13 which is a non final state. Statkas a loop of T or F. States 1, 9,10,11,18] the
input of these states is “F” their transition vgth to state 5. Going back to the S state if theting
“F” it goes to state 5, from state 5 if input is”iFgoes to state 14, if the input is “F” againstate 14,
then goes to state 15, then if input is “F” it gt@state 16, from state 16 if input is “F” it gdesstate
17. States 5,14,15,16,17 are all final states meaail the inputs of these states are acceptedfand
the input of these states are “T” all there traosg goes to state 1. Going back to state 17 pifitins
“F” it goes to state 18 that this state has a [6ay F. From state 1, if input is “F” transition g® to
state 2. From state 2 “T” it goes to state 3 elpait is “F” transition goes to state 14. From s@ié
input is “F” it goes to state 4 else it goes tdesth From state 4 if input is “T” it goes to sta®@ that

performs a loop T or F else it goes to state ldmFstate 5 if input is “T” it goes to state 6, fratate

6 if input is “F” it goes to state 7 else it goesstate 9. From state 7 if input is “T” it goesstate 8
else it goes to state 14. From state 8 if the ifgpUE” it goes to state 20 that performs a looprTF

else it goes to state 1.

Figure 7. DFS of AC algorithm in True/False for Rule 1

4.4.4 Short Answer

The figure 8 above has 4 states. From start dt#te input is 6 underscore it will go to state 1
and it will be accepted since state 1 is a finatestFrom state 1 if input is another underscoee th
transition will go to state 3 which is a non firgghte. In state 1 if the input is “x” (others) itllvgo to
state 2 a non final state. Going back to the statt if the input is “x”(others) it will go to ¢&a2. In

state 2 there is a transition of “_,x” that goestaite 2 itself, called loop transition.

Figure 8. DFS of AC algorithm in Short Answer rule # 2

The transition on table 4 is shown for better ustdgrding. Form start state if input is *_’
transition move to state 1 and the remaining input ' (6 underscore). The same process is

followed on the next inputs.

Table 4

Transition Table of Short answer for input

Current

Inputs

Remaining

Move

Matched

H
[N [N N
+
+1+

il el Y TSN TSN P

None

Presented in figure 9 is a diagram with 21 stabedy state 7 and 15 are the final states, the

rest are all none final. State O, if input is “t 'goes to state 1 else input is “s” it goes toes@which

performs a loop “s”. From state 1, if input is “it’'goes to state 2. In state 2 if input is “_" t&gp to
state 3, in state 3 if the input is “_" it goesstate 4. In state 4 if input is “_" it goes to st&t From
state 5, if the input is “_" it goes to state Goiffrstate 6, if input is “s” transition goes to st&twhich
perform a loop “s”, else transition goes to staterdm state 7 if input is “_" it goes to state Sdates

6 and 9 both performs a loop “s, ". States 1, 253,# input in this state is “s” it goes to stdit@

wherein it also performs a loop “s, ". Going backstate 8 if input is “_" it goes to state 10. tate

10 if input is “_" it goes to state 11, from stdte if input is “_” it goes to state 12, from stdt2 if

input is “_" it goes to state 13. In state 13 ipinis “_" it goes to state 14, from state 14 umis “

it goes to state 15. In state 15 is input is “ dngitions goes to state 18 which performs a lodp “_
States 15 and 18, if their inputs are “s” both $iions goes to state 16. State 16 has a looprid’ifa
input is “_" it goes to state 20 which has a lobattperforms the input “s, _". States 10, 11,1243,
if all the inputs of these states is “s” all thartsitions goes to state 17.

Figure 9. DFS of AC algorithm of Short Answer for Rule#1 &hd

There are number of table presented bellow wittediht sample inputs. All the process of the

following transition tables are the same from otin@nsition tables presented above.

Sample Inputs: _ S
Table 5.
Transition Table of Short Answer for input S

Current Inputs Remaining Move Matched
S S _ S_ 1 +
S_ 1 S _ 3 +
_ 3 _ None 5 -
Sample Inputs: SSS
Table 6.
Transition Table of Short Answer for input SSS
Current| Inputs| Remaininfj Move | Matched
SSS S _ SS 1 +
SS 1 S S 3 +
S 3 _ None 5 -
Sample Inputs: _SS
Table 7.
Transition Table of Short Answer for input _SS
Current| Inputs| Remaining Movg Matched
S S S _ IS $ 1 +
S 9 1 S S 3 +
S 3 S N o n B 3 +

As shown in the tables 5-7, ¢ and state is in#t#alito zero and x as others. While input is not
equal to empty it goes to switch statement. Wherirtput is an underscore it is in state 1 if thguin
is others it goes to state 2 then it incrementsvitiee of c. If ¢ is not equal to 6 or state isado 2

then it displays an error message otherwise itégpied.

4.5 Design Architecture

Figure 10 below illustrates the flow of the systéi@uiz-zone”. As you can see, the data
(question) formulated by the user is passed ohdddkenizer that splits data into a set of charact
The tokenized data is again passed on to the pattatching machine. The pattern matching machine
is composed of the DFA, goto and output functiome Ppattern matching machine is employed in the
identifying test validity. The construction of tl¥A in the pattern matching machine is a built-in
DFA. Through the DFA, the inputted data is evaldatsing the goto function and if it fits to theesl
of validity then it will display the data enterey the user otherwise it displays an error messagie t
the data entered is invalid. User will need to clympe error first before he/she can continue the

process.

data | I
— Tokenizer token

| Rules of Walidity |

Aho-Corasick Algorithm

Display walidated
test

matched T

Pattern M atching Machine

umatched

l

Display Error

Message

5. TEST RESULTS

Several testing were made to prove how accuratepécability of Aho-Corasick algorithm
in identifying test validity. The testers createdam, with different number of questions and
performed a number of test repetitions to it. Threserted questions to an exam from the Question
bank manually, inserted questions in random, a comtbbn of manual and random as well as the
combination of random to manual insertion of quesi As a result, they put “P” under the column of
“Applicability of Aho-Corasick Algorithm” meaningsathey do the testing, the testers found out that
the rules of validity, only those applicable, wé % solved by the algorithm. Sample Test Result

under True or False is shown in table 8.

Table 8.

Figure 10.Design Architecture

Test Result of True or False

Number of test Number of Applicability of Aho-Corasick
Test number performed guestions Algorithm
1 2 5 P
2 4 6 P
3 1 7 P
4 2 12 P
5 3 8 P
6 2 9 P
7 2 6 P
8 1 10 P
9 1 8 P
10 3 13 P
11 2 20 P
12 1 11 P
13 2 10 P
14 1 12 P
15 1 16 P
16 1 13 P
17 2 14 P
18 3 11 P

Table 8.
Test Result of True or False (cont’)

19 2 15 P
20 2 8 P
21 2 16 P
22 1 17 P
23 2 18 P
24 2 19 P
25 2 20 P
26 2 22 P
27 2 23 P
28 2 25 P
29 1 24 P
30 2 25 P

6. CONCLUSION

In terms of applying Aho-Corasick algorithm, resders found out that there are some rules
in which the algorithm can’t be applied. Out of ddes identified, only 7 rules are applicable by
ACA. Researchers made their own solution for thodes that can't be solve by the chosen

algorithm.
Table 9.
Applicability of Aho-Corasick Algorithm
Type of test Rules in Identifying Test Validity Applicability of AC
Algorithm

1.) Avoid Using the Alternative “All of the Above’ Applicable
and use “None of the "with extreme caution
2.) Random occurrence of responses should he Applicable
employed
Matching Items | 1.) There should be two columns;eurmblumn “A” Not applicable
are the stimuli which should be longer and more
descriptive than the responses under column “B”
2.) Use a larger or smaller number of responses tha Not applicable
premises, and permit the responses to be used more
than once.
3.) Place the responses in alphabetical, numendcal, Applicable
chronological order.

Multiple Choice

4.) Put all matching items in the same page. Nptiegble
Short Answer 1.) Leave only one blank. Applicable
2.) Blank should be of equal lengths. Applicable
3.) Place the blank near or at the end of the rste Applicable
True or False |1.) In arranging the items avoid the regular reznce Applicable
of “True” and “False” statements.
2.) Score is number of correct answers. Not apipléca

Table 9 shows the applicability of Aho-Corasickalthm in identifying test validity based on
the type of tests. There are some rules that ark tnat applicable”, since it can't be solve by Aho
Corasick Algorithm. As summarize in Table 9, thare three rules in matching items, and one in true

or false types of test that Aho-Corasick Algoritlemot applicable.

7. RECOMMENDATION

Based on the result of this study, not all rulesensolved by the algorithm used, it's better to
have not only Aho-Corasick algorithm but also t@ ws searched for another algorithm that is
applicable to solve all the rules in identifyingt@alidity. It is further recommended for futurteidy
the inclusion of other rules in identifying testsalidity using ACA or any other string-marching

algorithms to have an integrative and psycholobjcallidated test questionnaire.

References

Aho,A. & Corasick, M. (1975, June).Efficient Stribddatching: An Aid to Bibliographic Search. US&ommunications of
the ACM. p.18.

Boss, H. & Huang, K. (2004). Network Intrusion Detere SystemTechnical Report Journap. 2.

Knipp, C. T.(2006, SeptembePhysics Education Research’s Study on the Rellilid Validity of ExamsAmerican
Physics Journalp. 10.

Stephen, G. (1994). String Searching AlgorithmsAt¥gorld Scientific Publishing Co.
FScreation,Inc. (2003). ExamView. Retrieved fronpittvwww.examview.com.

Kojm, T. (2002, May 8). Clam Antivirus. Retrieved finchttp://www.clamav.net/.
Microsoft ® Encarta ® 2006. © 1993-2005 Microsoftr@aration.

Murherjee,T. (2005, April 6). Multiple-pattern mhtng in LZW Compressed Files using Aho-Corasick Aitjon.
Retrieved from .http://ieeexplore.ieee.org/Xplorgitojsp?url=/iel5/9633/30443/01402239.pdf?arnumbd62239).

Stahlberg, M.(2008, April 9). Antivirus Engine of F-Secure
Corporation.http://www.fsecure.com/weblog/archivé§i01421.html.

